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Abstract

In this paper we investigate Riemannian submersions from a Riemannian manifold with a semi-
symmetric metric connection onto a Riemannian manifold. We obtain O’Neill’s tensor fields
for semi-symmetric metric connection. We show that this tensors are not skew symmetric. We
obtain derivatives of those tensor fields and compare curvatures of the total manifold, the base
manifold and the fibres by computing curvatures.
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1 Introduction

Friedman and Schouten were the first introducing the semi-symmetric linear connection on a man-
ifold M approximately a century ago [3]. Later, Hayden studied on semi-symmetric metric con-
nection [5]. Afterward, Yano investigated a Riemannian manifold with a new connection called a
semi-symmetric metric connection [10].

A conventional way to compare two manifolds is by defining smooth maps from one manifold to
another. One such map is submersion, whose rank equals to the dimension of the target manifold.
An isometric submersion is called a Riemannian submersion. Riemannian submersion between
Riemannian manifolds was first studied by O’ Neill and Gray [6, 4]. These studies were extended
to manifolds with differentiable structures. The theory of Riemannian submersions can be used
actively in several areas regarding many applications [8].

In 2018, different connections in Riemannian submersions were investigated for the first time by
Akyol and Beğendi [1]. In their study, the basic properties and curvature relations of O’Neill ten-
sors were investigated using semi-symmetric non-metric connection on the basis of basic concepts
for Riemannian submersions. Recently, Demir and Sarı defined and studied Riemannian submer-
sions with quarter symmetric metric connection and investigated geometry of new submersions [2].
Moreover, Sarı studied semi-invariant Riemannian submersions with semi-symmetric non-metric
connection [9].

In this paper, we investigate for the first time a Riemannian submersion from a Riemannian
manifold on the basis of a semi-symmetric metric connection onto a Riemannian manifold with Levi-
Civita connection. In Section 2, we review some the standard facts on Riemannian submersions.
In section 3, we obtaine basic formulas considering Reimannian submersions and compared with
Riemannian manifolds with Levi-Civita connections. Then we could reach the counterparts of
O’Neill’s tensor fields in the semi-symmetric metric connections. Therefore, we could find basic
derivation properties for Reimann submersions. Finally, in section 4, we also investigate curvature
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relations between a Riemannian manifold with semi-symmetric metric connection and a Riemannian
manifold with a Levi-Civita connection.

2 Preliminaries

Let M be an n-dimensional Riemannian manifold with Riemannian metric g. We define a linear
connection ∇̃ on a Riemannian manifold M by

∇̃XY = ∇XY + η(Y )X − g(X,Y )P (2.1)

where P is any vector field and η is a 1- form associated with the vector field U on M by

η(Y ) = g(U, Y ).

Using (2.1), the torsion tensor T̃ of M with respect the connection ∇̃ is given by

T̃ (X,Y ) = (∇XY + η(Y )X − g(X,Y )P )− (∇YX + η(X)Y − g(Y,X)P )− [X,Y ] .

Then we have
TXY = η(Y )X − η(X)Y (2.2)

A linear connection satisfying (2.2) is called a semi-symmetric connection. Moreover, by using
(2.1), we obtain

(∇̃Xg)(Y, Z) = ∇̃Xg(Y, Z)− g(∇̃XY, Z)− g(Y, ∇̃XZ) (2.3)

for vector fields X,Y, Z on M .
A linear connection ∇̃ defined by (2.1) satisfies (2.2) and (2.3) and hence we call ∇̃ a semi-

symmetric metric connection.
Let (M, g) and (B, g′) be two Riemannian manifolds of dimension m and n with m > n. A

Riemannian submersion is a smooth map π : (M, g) → (B, g′) which is onto and satisfies the
following conditions:

(i) π has maximal rank
(ii) The differential π∗preserves the lengths of horizontal vectors.
For each q ∈ B, π−1(q) is an (m−n)−dimensional submanifold of M . The submanifolds π−1(q)

are called fibers. A vector field on M is called vertical if it is always tangent to fibers. A vector
field on M is called horizontal if it is always orthogonal to fibers. A vector field X on M is called
basic if X is horizontal and π-related to a vector field X ′on B. Note that we denote the projection
morphisms on the distributions kerπ∗ and (kerπ∗)

⊥ by V and H, respectively.
We recall that the sections of V and H are called the vertical vector fields and horizontal vector

fields, respectively. A Riemannian submersion π: M → B determines two (1, 2) tensor fields T
and A on M , by the formulas:

T (E,F ) = TEF = h∇vEvF + v∇vEhF (2.4)

and
A(E,F ) = AEF = v∇hEhF + h∇hEvF (2.5)

for any E,F ∈ Γ(TM), where v and h are the vertical and horizontal projections. These tensors
are called O’Neill tensors.
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From (2.4) and (2.5), one can obtain

∇VW = TVW + ∇̂VW,

∇VX = TVX + h(∇VX),

∇XV = v(∇XV ) +AXV,
∇XY = AXY + h(∇XY )

for any X,Y ∈ Γ(kerπ∗)
⊥and V,W ∈ Γ(kerπ∗). Moreover, if X is basic then

h(∇vX) = AXV.

We note that for U, V ∈ Γ(kerπ∗), TUV coincides with the second fundamental form of the im-
mersion of the fiber submanifolds. Moreover, for all X,Y ∈ Γ(kerπ∗)

⊥, AXY = 1
2v [X,Y ] reflecting

the complete integrability of the horizontal distribution H. It is known that A is alternating on the
horizontal distribution AXY = −AYX. T is symetric on the vertical distribution TUV = TV U for
U, V ∈ Γ(kerπ∗)

Lemma 2.1. If π : (M, g) → (B, g′) is a Riemannian submersion X and Y are basic vector fields
on M , π-related to X ′ and Y ′ on B, then we have the following properties:

(1)h[X,Y ] is a basic vector field and π∗h [X,Y ] = [X ′, Y ′] ◦ π
(2) h(∇XY ) is a basic vector field π-related to (∇′X′Y ′)where ∇ and ∇′ are the Levi-Civita

connection on M and B;
(3) [E,U ] ∈ Γ(kerπ∗), for any U ∈ Γ(kerπ∗) and for any basic vector field E [7].

3 Riemannian submersions with a semi-symmetric metric connection

In this section, we introduce Riemannian submersions from a Riemannian manifold with a semi-
symmetric metric connection onto a Riemannian manifold. We define and study O’Neill tensors
with semi-symmetric metric connection. We show that this tensors are not skew symmetric.

Firstly, let (M, g) be a Riemannian manifold and ∇̃ is a semi-symmetric metric connection on
M . Let also π be a Riemannian submersion from M onto a Riemannian manifold B. Then the
tensor T̃ and Ã with type (1, 2) on M with respect to ∇̃ is given by

T̃ (E,F ) = T̃EF = h∇̃vEvF + v∇̃vEhF

for all E,F ∈ Γ(TM).
By using (2.1) we obtain,

T̃EF = TEF + η(hF )vE − g(vE, vF )hP. (3.1)

Moreover the tensor Ã with type (1,2) on M with respect to ∇̃ is given by

Ã(E,F ) = ÃEF = v∇̃hEhF + h∇̃hEvF E, F ∈ Γ(TM).

for all E,F ∈ Γ(TM).
In a similar way, using (2.1), we have

ÃEF = AEF + η(vF )hE − g(hE, hF )vP. (3.2)

In the sequel, we show that the tensor fields and Ã and T̃ are not skew symmetric.
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Lemma 3.1. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian manifold
with semi-symmetric metric connection onto a Riemannian manifold. Then we have

g(T̃EF,G) = g(T̃EG,F ) + 2g(TEF,G) + η(hF )g(vE, vG)− η(hG)g(vE, vF )

−g(vE, vF )g(hP, hG) + g(vE, vG)g(hP, hF ) (3.3)

and

g(ÃEF,G) = g(ÃEG,F ) + 2g(AEG,F ) + 2η(vF )g(hE, hG)− 2η(vG)g(hE, hG) (3.4)

for all E,F,G ∈ Γ(TM).

Proof. For all E,F,G ∈ Γ(TM) using (3.1) we have

g(T̃EF,G) = g(T EF + η(hF )vE − h(g(vE, vF )P ), G)

We know that G = vG+ hG. Then we get,

g(T̃EF,G) = g(T EF,G) + η(hF )g(vE, vG)− g(vE, vF )g(hP, hG) (3.5)

In a similar way, we have

g(T̃EG,F ) = −g(TEG,F ) + η(hG)g(vE, vF )− g(vE, vG)g(hP, hF ) (3.6)

Substracting (3.5) from (3.6), which gives (3.1). By using the same way, one can easily get (3.4).
This completes the proof of the lemma. q.e.d.

We now check symmetry properties of T̃ and Ã.

Proposition 3.2. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian
manifold with semi-symmetric metric connection onto a Riemannian manifold. Then we have

T̃UW = T̃WU (3.7)

T̃UX = T̃XU + η(hX)vU (3.8)

ÃXY = ÃYX + 2AXY (3.9)

ÃXU = ÃUX + 2AXU + η(vU)hX (3.10)

for all U, V ∈ Γ(V) X,Y ∈ Γ(H)

Proof. Since T̃UV = TUV , for U, V ∈ Γ(V) and T is symmetric on the vertical distribution, we get

(3.7). In a similar way, since ÃXY = AXY for X,Y ∈ Γ(H) and A is anti-symmetric on the
horizontal distribution, we obtain (3.9).

For all U ∈ Γ(V) and X ∈ Γ(H) using (3.1) we have

T̃UX = TUX + η(hX)vU − g(vU, vX)hP

and
T̃XU = TXU + η(hU)vX − g(vX, vU)hP.
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Then, using (3.1), (2.1), vX = 0 and TUX = TXU, we have

T̃UX = T̃XU + η(hX)vU.

On the other hand, using (3.2), (2.1), vX = 0 , hU = 0 and AUX = −AXU we get

ÃXU = ÃUX + 2AXU + η(vU)hX

which completes proof. q.e.d.

Lemma 3.3. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian manifold
with semi-symmetric metric connection onto a Riemannian manifold. Then we have

∇̃VW = ∇̂VW + TVW (3.11)

∇̃VX = h∇VX + TVX + η(X)V (3.12)

∇̃XV = AXV + v∇̃XV + η(V )X (3.13)

∇̃XY = AXY + h∇̃XY + g(X,Y )vP (3.14)

for all V,W ∈ Γ(V) and X,Y ∈ Γ(H), where ∇̂VW = v∇̃VW and X is basic then, h∇̃VX =
h∇̃XV = AXV.

Proof. Since ∇ is a Levi-Civita connection, using (2.1), we obtain (3.11). The other assertions can
be obtain in a similar way. q.e.d.

Definition 3.4. Letπ : (M, g)→ (B, g′) be a Riemannian submersion from a Riemannian manifold
with semi-symmetric metric connection onto a Riemannian manifold. The covariant derivates of
Ã and T̃ given by

(∇̃EÃ)FH = (∇̃EÃ)(F,H) = ∇̃E(ÃFH)− Ã∇̃EF
(H)− ÃF (∇̃EH) (3.15)

and
(∇̃E T̃ )FH = (∇̃E T̃ )(F,H) = ∇̃E(T̃FH)− T̃∇̃EF

(H)− T̃F (∇̃EH) (3.16)

for all E,F,H ∈ Γ(TM).

Theorem 3.5. Let π : (M, g)→ (B, g′) be a Riemannian submersion from a Riemannian manifold

with semi-symmetric metric connection onto a Riemannian manifold. The covariant derivates of Ã
and T̃ given by

(∇̃V Ã)WE = −ÃTVWE

(∇̃V T̃ )Y E = −T̃TV Y+η(Y )V E

(∇̃XÃ)WE = −ÃAXW+η(W )XE

(∇̃X T̃ )Y E = −T̃AXY+g(X,Y )vPE

for all X,Y ∈ Γ(H) and V,W,E ∈ Γ(V)



104 Hakan Demir, Ramazan Sarı

Proof. Firstly, since A is a horizontal vector field, the vertical component is ignored. Therefor from
(3.15) we get

(∇̃V Ã)WE = −Ã∇̃VW
E.

Then using (3.11), we have

(∇̃V Ã)WE = −ÃTVWE.

Similarly, since T is vertical vector field, the horizontal components are ignored. Therefore, from
(3.13), we arrive

(∇̃V T̃ )Y E = −T̃∇̃V Y
E.

Therefore using (3.12) we conclude

(∇̃V T̃ )Y E = −T̃TV Y+η(Y )V E.

On the other hand, considering that Ã is a horizontal vector, using (3.13), we get

(∇̃XÃ)wE = −Ã∇̃XW
(E).

Then from (3.13), we have

(∇̃XÃ)WE = −ÃAXW+η(W )XE.

Finally, using (3.16), we conclude

(∇̃X T̃ )Y E = −T̃∇̃XY
(E).

Therefore from (3.14), we obtain

(∇̃X T̃ )Y E = −T̃AXY+g(X,Y )vPE.

q.e.d.

4 Curvature relations with respect to semi-symmetric metric
connection

In this section, we will show for the first time how to obtain curvature tensors defined in the
Riemannian manifold in semi-symmetric metric connection. We first note that we denote curvature
tensor fields of ∇̃ by R̃

R̃(U, V )W =∇̃U ∇̃VW − ∇̃V ∇̃UW − ∇̃[U,V ]W. (4.1)

Theorem 4.1. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian mani-
fold with semi-symmetric metric connection onto a Riemannian manifold. We denote Riemannian
curvatures of M and any fibre by R̃ and R̂, respectively. Then we have

g(R̃(U, V )W,F ) = g(R̂(U, V )W,F ) + g(T VW,T UF )− g(T UW,T V F ) + η(T UW )g(U,F )− η(T UW )g(V, F )
(4.2)

and
g(R̃(U, V )W,X) = g((∇̃UTV )W,X)− g((∇̃V TU )W,X) (4.3)

for all U, V,W,F ∈ Γ(V) and X ∈ Γ(H).
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Proof. For all U, V,W,F ∈ Γ(V) using (3.14) and (3.12), we arrive

∇̃U ∇̃VW = TUTVW + h∇̃UTVW + η(TVW )U + TU ∇̂VW + ∇̃U ∇̂VW.

and
∇̃[U,V ]W = T[U,V ]W + ∇̂[U,V ]W.

Then, from (4.1) we have

R̃(U, V )W =T UT VW + h∇̃UT VW + η(T VW )U+T U ∇̂VW + ∇̃U ∇̂VW−T V T UW − h∇̃V T UW
− η(∇̃UW )V−T V ∇̂UW − ∇̃V ∇̂UW−T [U,V ]W − ∇̂[U,V ]W.

If this last equation is multiplied by V ∈ Γ(V) we have

g(R̃(U, V )W,F ) = g(R̂(U, V )W,F ) + g(T VW,T UF )− g(T UW,T V F ) + η(T UW )g(U,F )− η(T UW )g(V, F )

Similarly, for all X ∈ H, we obtain

g(R̃(U, V )W,X) = g((∇̃UTV )W,X)− g((∇̃V TU )W,X)

q.e.d.

Corollary 4.2. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian mani-
fold with semi-symmetric metric connection onto a Riemannian manifold. We denote Riemannian
curvatures of M and any fibre by R̃ and R̂, respectively. Then we have

R̃(V,W,X,K) = R̂(V,W,X,K) + g(TV h∇̃WX,K)− g(TWh∇̃VX,K)

+η(h∇̃WX)g(V,K)− η(h∇̃VX)g(W,K) + g(∇̂V TWX,K)

−g(∇̂WTVX,K) + g(h∇̃VX,hP )g(W,K)− g(h∇̃WX,hP )g(V,K)

+g(TVX, vP )g(W,K)− g(TWX, vP )g(V,K)

+η(X)g(V, vP )g(W,K)− η(X)g(W, vP )g(V,K)

−g(T[V,W ]X,K)− η(X)g([V,W ] ,K) + g(X,∇V P )g(W,K)

−g(X,∇WP )g(V,K) + η(X)η(V )g(W,K)− η(X)η(W )g(V,K)

and

R̃(X,V, Y, Z) = R̂(X,V, Y,W ) + g(AXTV Y,Z) + η(TV Y )g(X,Z)

+η(X)η(V )g(X,Z)− g(TVAXY,Z)− g(X,Y )g(TV vP, Z)

−η(Y )g([X,V ] , Z) + η(Y )g(AVX,Z)

for all V,W,K ∈ Γ(V) and X,Y, Z ∈ Γ(H).

Theorem 4.3. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian mani-
fold with semi-symmetric metric connection onto a Riemannian manifold. We denote Riemannian
curvatures of M and B by R̃ and R′, respectively. Then we have

g(R̃(X,Y )Z,H) = g(R′(X,Y )Z,H)− g(AY Z,AXH) + η(AY Z)g(X,H) + g(AXZ,AYH)

−η(AXZ)g(Y,H) + g(Y, Z)g(∇̃XP,H)− g(X,Z)g(∇̃Y P,H) (4.4)
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and

g(R̃(X,Y )Z, V ) = g(R′(X,Y )Z, V ) + g(AY Z,AXV ) + g(v∇̃XAY Z, V ) + g(AXh∇̃Y Z, V )

−g(AXZ,AY V )− g(v∇̃YAXZ, V )− g(AY h∇̃XZ, V ) (4.5)

for all X,Y, Z,H ∈ Γ(H) and V ∈ Γ(V).

Proof. For all X,Y, Z ∈ Γ(H) ,using (3.13), (3.14) and (4.1) we have

R̃(X,Y )Z = R′(X,Y )Z+AXAY Z + v∇̃XAY Z + η(AY Z)X+AXh∇̃Y Z
−AYAXZ − v∇̃YAXZ − η(AXZ)Y−AY h∇̃XZ−A[X,Y ]Z

Then for all H ∈ Γ(H) we conclude

g(R̃(X,Y )Z,H) = g(R′(X,Y )Z,H)− g(AY Z,AXH) + η(AY Z)g(X,H) + g(AXZ,AYH)

− η(AXZ)g(Y,H) + g(Y, Z)g(∇̃XP,H)− g(X,Z)g(∇̃Y P,H)

On the other hand, for all V ∈ Γ(V) we obtain

g(R̃(X,Y )Z, V ) = g(R′(X,Y )Z, V ) + g(AY Z,AXV ) + g(v∇̃XAY Z, V ) + g(AXh∇̃Y Z, V )

− g(AXZ,AY V )− g(v∇̃YAXZ, V )− g(AY h∇̃XZ, V )

q.e.d.

Corollary 4.4. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian mani-
fold with semi-symmetric metric connection onto a Riemannian manifold. We denote Riemannian
curvatures of M and any fibre by R̃ and R̂. Then we have

R̃(V,W,X, Y ) = R̂(V,W,X, Y ) + g(TWX, TV Y )− g(TVX, TWY )

η(X)g(TVW,Y )− η(X)g(TWV, Y ),

R̃(V,X,W, Y ) = R̂(V,X,W, Y ) + g(h∇̃VAXW,Y ) + g(TV v∇̃XW,Y )

+g(∇̂VW,P )g(X,Y ) + g(TVW,P )g(X,Y )

+g(W,∇V P )g(X,Y ) + g(W,V )g(X,Y )

−η(V )η(W )g(X,Y ) + η(W )g(h∇̃VX,Y )

+η(W )g(TVX,Y )− g(AX∇̂VW,Y )− η(∇̂VW )g(X,Y )

−g(h∇̃XTVW,Y )− g(T[V,X]W,Y ),

R̃(X,V, Y,W ) = R̂(X,V, Y,W ) + g(AXh∇̃V Y,W ) + g(X,h∇̃V Y )g(vP,W )

+g(v∇̃XTV Y,W ) + g(AXY, vP )g(V,W )

+g(h∇̃XY, hP )g(V,W ) + g(X,Y )g(V,W )

+g(Y, ∇̃XP )g(V,W ) + g(Y,X)g(V,W )

−η(X)η(Y )g(V,W ) + η(Y )g(v∇̃XV,W )− g(∇̂VAXY,W )

−g(TV h∇̃XY,W )− η(h∇̃XY )g(V,W )− g(h∇̃VX,Y )g(vP,W )

−g(X,h∇̃V Y )g(vP,W )− g(X,Y )g(∇̂V vP,W )− g(T[X,V ]Y,W )
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and

R̃(X,Y, V,W ) = R̂(X,Y, V,W ) + g(AXAY V,W )− g(AYAXV,W ) + g(X,AY V )η(W )

−g(Y,AXV )η(W ) + η(V )g(AXY,W )− η(V )g(AYX,W )

for all V,W ∈ Γ(V) and X,Y ∈ Γ(H)

Theorem 4.5. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian mani-
fold with semi-symmetric metric connection onto a Riemannian manifold. We denote Riemannian
curvatures of M,B and any fibre by R̃, R′ and R̂, respecticely. Then we have

K̃(U, V ) = g(R̂(U, V )U, V )− ‖TUV ‖2 + g(T V V,T UU)
+ η(T V U)g(U, V )− η(T UU)

and
K̃(X,Y ) = K ′(X,Y )− g(AY Y,AXX)− ‖AXY ‖2 + η(AY Y )

+ g(∇̃XP,X) + g(X,Y )(−η(AXY )− g(∇̃Y P,X))

for all U, V ∈ Γ(V) and X,Y ∈ Γ(H).

Proof. For all U, V ∈ Γ(V) and X,Y ∈ Γ(H) using (4.4) we conclude

K̃(U, V ) = g(R̂(U, V )U, V )− g(T UV,T V U) + g(T V V,T UU)
+ η(T V U)g(U, V )− η(T UU)− g(V, V ).

On the other hand, for all X,Y ∈ Γ(H) we arrive

K̃(X,Y ) = g(R′(X,Y )X,Y )− g(AY Y,AXX) + g(AXY,AYX)

+ η(AY Y )g(X,X)− η(AXY )g(Y,X) + g(Y, Y )g(∇̃XP,X)

− g(X,Y )g(∇̃Y P,X)

which completes the proof. q.e.d.

Corollary 4.6. Let π : (M, g) → (B, g′) be a Riemannian submersion from a Riemannian mani-
fold with semi-symmetric metric connection onto a Riemannian manifold. We denote Riemannian
curvatures of M,B and any fibre by R̃, R′ and R̂, respectiely. Then we have

K̃(V,X) = R̂(V,X, V,X) + g(h∇̃VAXV,X) + g(TV v∇̃XV,X) + η(∇̂V V )

+η(TV V ) + η(V )g(h∇̃VX,X)− g(AX∇̂V V,X)− η(∇̂V V )

−g(h∇̃XTV V,X)− g(T[V,X]V,X) + g(V,∇V P ) + 1− [η(V )]
2

and

K̃(X,V ) = g(R̂(X,V )X,V ) + g(AXh∇̃VX,V ) + g(X,h∇̃VX)η(W ) + g(v∇̃XTVX,V )

+g(AXX, vP ) + g(h∇̃XX,hP ) + g(X,∇XP ) + 2− [η(X)]
2

+η(X)g(v∇̃XV, V )− g(∇̂VAXX,V )− g(TV h∇̃XX,V )− η(h∇̃XY )

−g(h∇̃VX,X)η(V )− g(X,h∇̃VX)η(V )− g(∇̂V vP, V )− g(T[X,V ]X,V )

for all V ∈ Γ(V) and X ∈ Γ(H).
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Conclusion 4.7. Semi-symmetric metric connections and Riemannian submersions have potential
for applications in many fields of mathematics and physics. Researchers have increased studies on
this field from different areas in recent years. In this paper, the idea of examining Riemann sub-
mersion with different connections is emphasized. We defined and studied Riemannian submersions
with semi-symmetric metric connection for the first time. The works on this subject will be useful
tools for the applications of Riemannian submersion with different connections.
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